If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-1260=0
a = 1; b = 2; c = -1260;
Δ = b2-4ac
Δ = 22-4·1·(-1260)
Δ = 5044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5044}=\sqrt{4*1261}=\sqrt{4}*\sqrt{1261}=2\sqrt{1261}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1261}}{2*1}=\frac{-2-2\sqrt{1261}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1261}}{2*1}=\frac{-2+2\sqrt{1261}}{2} $
| -9(7f-6=-26 | | 4/12*c+120/48=30/4 | | 120/48=30/4+(c*4/12) | | 120/48=30/4+c*4/12 | | x+3=-5x+34 | | -3x-3=5-3 | | x^2=9/484 | | -4=n-12 | | X+2=6x-15 | | 2*(2^n)-9=0 | | 1/6(x+1/5)=-17/15 | | 2*2^n-9=0 | | m/14=-17 | | 0=2*2^n-9 | | 61 (x+51 )=−1517 | | 4·(x-1)-7(x-6)=5·(x+6) | | -6(x+7)=84 | | -5(-5k-8)+4=119 | | 120=-8(1+x) | | 4y+19=3y-13 | | 5(3n-2)-2=132 | | 8(-8)=2x+8 | | 42=-2p+6 | | 7(1-5m=-273 | | 7x+2=3x+49 | | 8=x+4x+3x | | 2x²-10x+9=0 | | -5|3x-7|+3=13 | | 5(3n-2)-2=-132 | | -98=7(2r-6) | | -87=-3(1-5n)-n | | 10x-8=6x-10 |